China Hot selling 80 Ratio Worm Gear Aluminum Reducer Nmrv075 Hollow Shaft Gearbox comer gearbox

Product Description

 

Dr Drawing awing

Drawing

There are many types of worm gearboxes. If you have any questions about the selection, please contact us first.

Band name

CHINAMFG

Model No.:

NMRV571

Ratio:

5,7.5,10,15,20,25,30,40,50, 60

Color:

Blue/Silver Grey Or On Customer Request

Material:

Housing: Size 25-110 is Aluminum Alloy, Size 110-150 is Cast-Iron

Worm Wheel: ZCuSn10Pb1

Worm:20Cr

Pinion:Tin Bronze

Output Shaft: Steel-45#

Matching motor

15w,20w,25w,30w,40w,60W,90W,120W

Usages:

Industrial Machine: Food Stuff, Ceramics, Chemical, Packing, Dyeing,Wood working, Glass.

IEC Flange:

IEC Standard Flange Or On Customer Request

Structure: base-mounted, input shaft, input flange, additional single or double output shafts(As Customer Request).

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

worm gearbox

What are the Noise Levels Associated with Worm Gearboxes?

The noise levels associated with worm gearboxes can vary depending on several factors, including the design, quality, operating conditions, and maintenance of the gearbox. Here are some key points to consider:

  • Design and Quality: Well-designed and high-quality worm gearboxes tend to produce lower noise levels. Factors such as gear tooth profile, precision manufacturing, and proper alignment can contribute to reduced noise.
  • Gear Engagement: The way the worm and worm wheel engage and mesh with each other can impact noise levels. Proper tooth contact and alignment can help minimize noise during operation.
  • Lubrication: Inadequate or improper lubrication can lead to increased friction and wear, resulting in higher noise levels. Using the recommended lubricant and maintaining proper lubrication levels are important for noise reduction.
  • Operating Conditions: Operating the gearbox within its specified load and speed limits can help prevent excessive noise generation. Overloading or operating at high speeds beyond the gearbox’s capabilities can lead to increased noise.
  • Backlash: Excessive backlash or play between the gear teeth can lead to impact noise as the teeth engage. Proper backlash adjustment can help mitigate this issue.
  • Maintenance: Regular maintenance, including gear inspection, lubrication checks, and addressing any wear or damage, can help keep noise levels in check.

It’s important to note that while worm gearboxes can produce some noise due to the nature of gear meshing, proper design, maintenance, and operation can significantly reduce noise levels. If noise is a concern for your application, consulting with gearbox manufacturers and experts can provide insights into selecting the right gearbox type and implementing measures to minimize noise.

worm gearbox

How to Calculate the Input and Output Speeds of a Worm Gearbox?

Calculating the input and output speeds of a worm gearbox involves understanding the gear ratio and the principles of gear reduction. Here’s how you can calculate these speeds:

  • Input Speed: The input speed (N1) is the speed of the driving gear, which is the worm gear in this case. It is usually provided by the manufacturer or can be measured directly.
  • Output Speed: The output speed (N2) is the speed of the driven gear, which is the worm wheel. To calculate the output speed, use the formula:

    N2 = N1 / (Z1 * i)

Where:
N2 = Output speed (rpm)
N1 = Input speed (rpm)
Z1 = Number of teeth on the worm gear
i = Gear ratio (ratio of the number of teeth on the worm gear to the number of threads on the worm)

It’s important to note that worm gearboxes are designed for gear reduction, which means that the output speed is lower than the input speed. Additionally, the efficiency of the gearbox, friction, and other factors can affect the actual output speed. Calculating the input and output speeds is crucial for understanding the performance and capabilities of the worm gearbox in a specific application.

worm gearbox

What is a Worm Gearbox and How Does It Work?

A worm gearbox, also known as a worm gear reducer, is a mechanical device used to transmit rotational motion and torque between non-parallel shafts. It consists of a worm screw and a worm wheel, both of which have helical teeth. The worm screw resembles a threaded cylinder, while the worm wheel is a gear with teeth that mesh with the worm screw.

The working principle of a worm gearbox involves the interaction between the worm screw and the worm wheel. When the worm screw is rotated, its helical teeth engage with the teeth of the worm wheel. As the worm screw rotates, it translates the rotational motion into a perpendicular motion, causing the worm wheel to rotate. This perpendicular motion allows the worm gearbox to achieve a high gear reduction ratio, making it suitable for applications that require significant speed reduction.

One of the key features of a worm gearbox is its ability to provide a high gear reduction ratio in a compact design. However, due to the sliding nature of the meshing teeth, worm gearboxes may exhibit higher friction and lower efficiency compared to other types of gearboxes. Therefore, they are often used in applications where efficiency is not the primary concern but where high torque and speed reduction are essential, such as conveyor systems, elevators, automotive steering systems, and certain industrial machinery.

China Hot selling 80 Ratio Worm Gear Aluminum Reducer Nmrv075 Hollow Shaft Gearbox   comer gearbox	China Hot selling 80 Ratio Worm Gear Aluminum Reducer Nmrv075 Hollow Shaft Gearbox   comer gearbox
editor by CX 2024-01-05